SC1462 单通道 16 位 ADC

主要性能

- 250kHz 采样率
- 输入范围: 4V,5V,10V,±3.3V,±10V,±5V
- ±2 LSB INL_{MAX}, ±1 LSB DNL_{MAX}
- 16 位无失码
- 具有菊花链 (TAG) 功能的 SPI 串行输出
- 5 V 模拟电源
- 支持 3.3V~5.5V 数字电源
- 使用内部或外部参考
- 250 KSPS 时的典型功耗为 70mW

- 简单的 DSP 接口
- 20 引脚 SOIC 和 28 引脚 TSSOP 封装

应用场合

- 工业过程控制
- 数据采集系统
- 数字信号处理
- 医疗器材
- 仪表

功能模块示意图

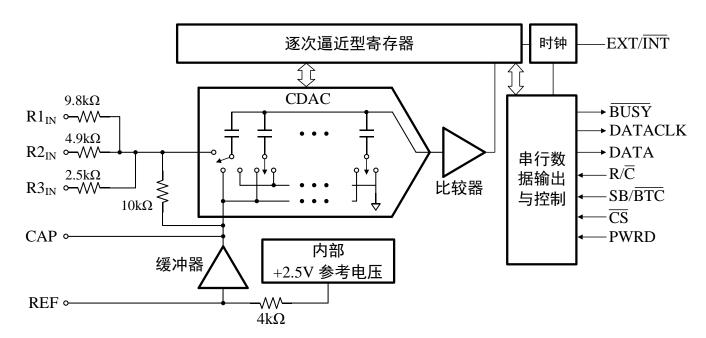


图 1 功能模块示意图

产品概况

SC1462 是一款采用了先进 CMOS 结构的 16 位模数转换器,内部有一个 16 位 SAR A/D 转换器,具备采样保持、参考、时钟以及串行数据接口等功能。数据不仅可以使用内部时钟输出,也可以外部数据时钟同步。在封装设计上,SC1462 可同时支持 20 引脚的 SOIC 封装和 28 引脚的TSSOP 封装,两种封装均支持 SC1462 在-40℃至 85℃的温度范围内正常工作。

SC1462 在整个温度范围内,额定采样率可达 250kHz; 精密电阻器提供了±10V 和 0~5V 等各种输入范围。 SC1462 可以实现在单个+5V 电源工作条件下,功耗低于 100mW,另外数字电源兼容 3.3V~5.5V 供电。

此外, SC1462 还可以输出同步脉冲以便与标准 DSP 处理器配合使用。

景目

主要性能	
应用场合	
功能模块示意图	1
产品概况	2
目录	3
ADC 特性	4
模拟规格与 ADC 特性参数	4
数字规格	6
极限参数	7
ESD 保护	7
管脚(焊盘)配置及功能说明	8
时序要求	9
时序参数测量信息	10
使用说明	16
基本操作	16
读取数据	16
内部 DATACLK	16
外部 DATACLK	17
TAG 特性	18
模拟输入	19
外形尺寸	25
订购信息	25

ADC 特性

模拟规格与 ADC 特性参数

表 1 模拟规格与 ADC 特性

为	数	条件	最小值	典型值	最大值	单位
分辨率				16		位
无	失码			保证		
模拟输入电压的						
<u>+1</u>	0 V			11.5		kΩ
±:	5 V			6.7		kΩ
±3.	33 V			5.4		kΩ
0 V t	o 10 V			6.7		kΩ
0 V	to 5 V			5.0		kΩ
0 V	to 4 V			5.4		kΩ
数据吞吐速度			l		l	l .
	英周期	采样加转换	4			μs
吞	土率				250	kHz
直流特性			•	1	<u> </u>	T.
微分非约	栈性(DNL)		-1		1	LSB
积分非约	线性(INL)		-7		7	LSB
转换	· 噪声			1		LSB
井目和1171 子	±10V 范围	内部参考	-0.5		0.5	0/ FGD
满量程误差	其他范围	0.1%外部固定电阻	-0.5		0.5	%FSR
满量程	误差漂移	内部参考		±7		ppm/ °C
V# E 40 V0 V4	±10V 范围	外部参考	-0.5		0.5	FGF
满量程误差	其他范围	0.1%外部固定电阻	-0.5		0.5	%FSR
满量程误差漂移		外部参考		+2		ppm/ °C
双极性零点误差			-5		5	mV
双极性零	点误差漂移			±0.4		ppm/ °C
单极性零点误 差	0~10V 范围		-5		5	mV

参数	条件	最小值	典型值	最大值	单位
0~4V 和 0~5V 范围		-3		3	
单极性零点误差漂移			<u>+2</u>		ppm/ °C
断电后恢复到额定精度	CAP引脚接1μF 电容		1		ms
电源敏感性(V _{ANA} = V _D)	$+4.75 \text{ V} < \text{V}_{\text{D}} < +5.25 \text{ V}$	-8		8	LSB
数字电源 V _{DIG}		3.3	5	5.5	V
交流特性					•
信噪失真比(SNDR)	f _{IN} =1kHz		80.5		dBFS
无杂散动态范围(SFDR)	f _{IN} =1kHz		87.0		dBFS
信噪比(SNR)	f _{IN} =1kHz		85.1		dBFS
总谐波失真(THD)	f _{IN} =1kHz		-85.3		dBFS
参考电压					
内部参考电压		2.48	2.5	2.52	V
内部参考电压驱动电流 (必须使用 外部缓冲)			1		μΑ
内部参考漂移			8		ppm/ °C
外部参考电压范围		2.3	2.5	2.7	V
外部参考负载电流	外部 2.5V参考电压			100	μΑ

数字规格

除非另有说明,在 T_A =-40 Υ 至 85 Υ , f_S =250 kHz, V_{ANA} =5V, V_{DIG} =3.3V~5.5V,使用内部参考电压和 0.1%,0.25W 固定电阻。

表 2 数字规格参数

	参数	条件	最小值	典型值	最大值	单位
数字	输入					
V_{IL}	逻辑电平低		-0.3		0.8	V
V_{IH}	逻辑电平高		2.0		V _{DIG} +0.3	V
I_{IL}	低电平输入电流	V _{IL} =0V			±10	mA
I _{IH}	低电平输入电流	V _{IH} =5V			±10	mA
数字	输出				•	
	数据格式			串行 16 位		
	数据编码			二进制补码或直二进制		
	流水线延迟			转换结果只有在完成转换 后才可用		
	数据时钟			可选择的内部或外部数据 时钟		
	内部时钟	EXT/INT Low		9		MHz
	外部时钟	EXT/INT High	0.1		26	MHz
V_{OL}	逻辑电平低	$I_{SINK} = 1.6 \text{ mA}$			0.4	V
V_{OH}	逻辑电平高	$I_{SOURCE} = 500 \text{ mA}$	V_{DIG} -0.5			V
	漏电流	高阻态,V _{OUT} =0V to V _{DIG}			±5	μΑ
	输出电容	高阻态			15	pF

极限参数

V_{ANA} 至 AGND1/20.3V 至 6V
V_{DIG} 至 DGND0.3V 至 6V
模拟输入(R1 _{IN} , R2 _{IN} , R3 _{IN})电压至 AGND1/2±25V
模拟参考输入 REF, CAP 电压至 AGND2+V _{ANA} +0.3V to AGND2-0.3 V
数字输入电压至 DGND0.3V 至+V _{DIG} +0.3V
最大结温 T _{J,MAX}
工作温度范围40℃至85℃
存储温度范围65℃至150℃
ESD
HBM4000V
CDM500V
Latch up 电流200mA

对以上所列的最大极限值,如果器件工作在超过此极限值的环境中,很可能会对器件造成永久性破坏。在实际运用中,最好不要使器件工作在此极限值或超过此极限值的环境中。

本产品属于静电敏感器件。拿取时要采取合适的 ESD 保护措施,以免造成性能下降或功能失效。

管脚(焊盘)配置及功能说明

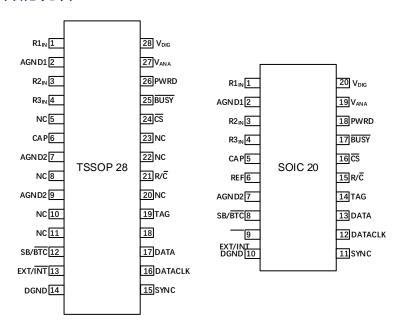


图 2 SC1462 管脚(焊盘)配置(俯视图)

表 3 管脚定义

引脚名称	引脚	编号	」引脚类型	引脚功能
71 MAY 127 17V	TSSOP-28	SOIC-20		J1,047-23,116
AGND1	2	2	G	模拟地
AGND2	9	7	G	模拟地
$\overline{ ext{BUSY}}$	25	17	DO	输出繁忙位
CAP	6	5	AO	参考电压缓冲电容
$\overline{\mathtt{CS}}$	24	16	DI	芯片的选择信号
DATA	17	13	DO	串行数据输出
DATACLK	16	12	DIO	数据时钟
DGND	14	10	G	数字地
EXT/INT	13	9	DI	选择数据的外部时钟或内部时钟。
NC	5,8,10,11,18,20 ,22,23	/		无连接
PWRD	26	18	DI	关断引脚
R/\overline{C}	21	15	DI	读/转换引脚
REF	7	6	AIO	输入/输出参考电压
R1 _{IN}	1	1	AI	模拟输入
R2 _{IN}	3	3	AI	模拟输入
R3 _{IN}	4	4	AI	模拟输入
SB/\overline{BTC}	12	8	DI	选择数据输出格式为直接二进制还是二进制补码
SYNC	15	11	DO	输出同步信号
TAG	19	14	DI	用于外部时钟模式的输入标志
V _{ANA}	27	19	P	模拟电源电压
V_{DIG}	28	20	P	数字电源电压

上海芯炽科技集团有限公司所有, 未经允许, 不得外传

时序要求

表 4 时序要求

	参数	最小值	典型值	最大值	单位
t_{w1}	转换的脉冲时间	40			ns
t_{d1}	从 R/C低电平到BUSY的延迟时间		6	20	ns
t_{w2}	BUSY低的脉冲时间			2.2	μs
t_{d2}	转换之后BUSY的延迟时间		5		ns
t _{d3}	孔径延迟时间		5		ns
t _{conv}	转换时间			2.2	μs
t_{acq}	数据采集时间	1.8			μs
t _{conv} +t _{acq}	周期时间			4	μs
t_{d4}	R/C低到内部时钟 DATACLK 输出的延迟时间		270		ns
t _{c1}	内部时钟 DATACLK 的周期时间		110		ns
t _{d5}	数据有效到内部时钟 DATACLK 变高的延迟时间	15	35		ns
t_{d6}	内部时钟 DATACLK 变低到数据有效的延迟时间	20	35		ns
t_{c2}	外部时钟 DATACLK 的周期时间	35			ns
t_{w3}	外部时钟 DATACLK 的高电平持续时间	15			ns
t_{w4}	外部时钟 DATACLK 的低电平持续时间	15			ns
t _{su1}	R/C变高/低到外部时钟 DATACLK 变高的建立时间	15			ns
t_{su2}	R/C变换到CS变换的建立时间	10			ns
t _{d7}	DATACLK 变高到 SYNC 的延迟时间	3		35	ns
t_{d8}	数据有效的延迟时间	2		20	ns
t_{d9}	CS到上升沿的延迟时间	10			ns
t _{d10}	CS和 R/C变低之后到上一个数据可得的延迟时间	2			μs
t_{su3}	BUSY变换到第一个外部 DATACLK 的建立时间(读上一次转换的数据)	5			ns
t_{su4}	BUSY变换到第一个外部 DATACLK 的建立时间(读本次转换的数据)	1.2			μs
t _{d11}	第一个外部时钟 DATACLK 到BUSY下降沿的延迟时间			1	μs
t _{su3}	TAG有效的建立时间	0			ns
t _{h1}	TAG有效的保持时间	2			ns

时序参数测量信息

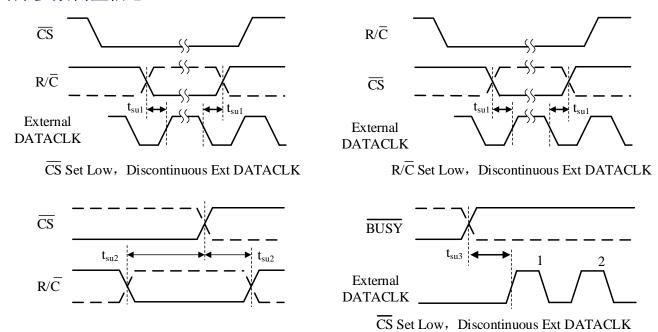
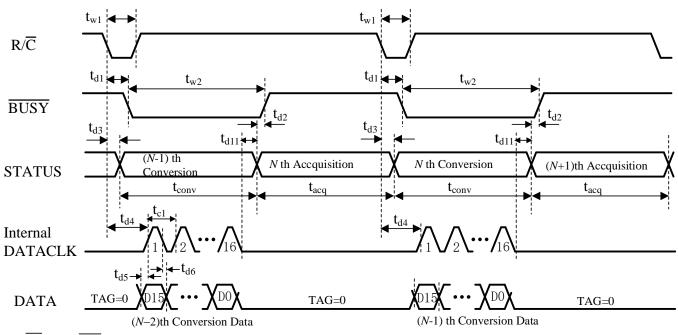
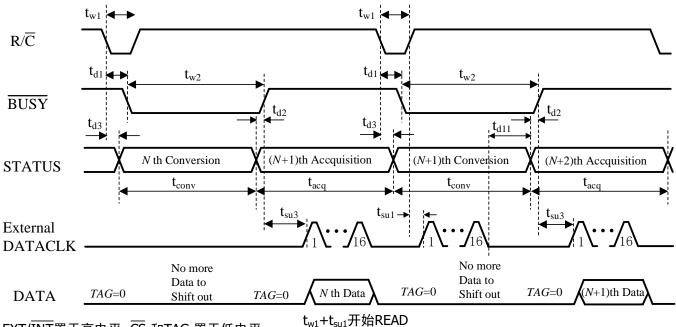




图 3 关键时序

CS, EXT/INT, TAG 置于低电平

图 4 基本转换时序(内部 DATACLK-转换期间读取先前数据)

EXT/INT置于高电平, CS 和TAG 置于低电平

注意,当*N*=1时,不要在第一次转换期间,发送External DATACLK

图 5 基本转换时序(外部 DATACLK)

EXT/INT 置于高电平, CS 置于低电平

tw1+tsu1 开始READ

图 6 转换后读取(外部不连续 DATACLK)

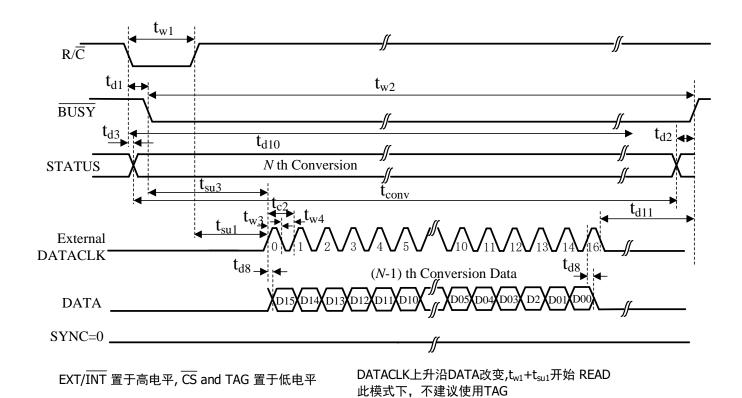


图 7 转换期间读取上一次转换数据(外部不连续 DATACLK)

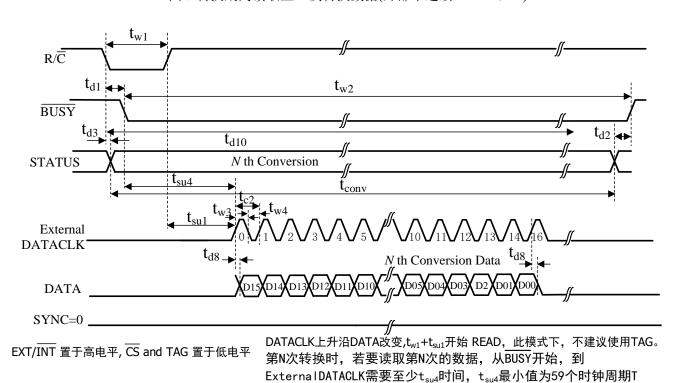


图 8 转换期间读取本次转换数据(外部不连续 DATACLK)

此模式需要通过配置寄存器实现

上海芯炽科技集团有限公司所有, 未经允许, 不得外传

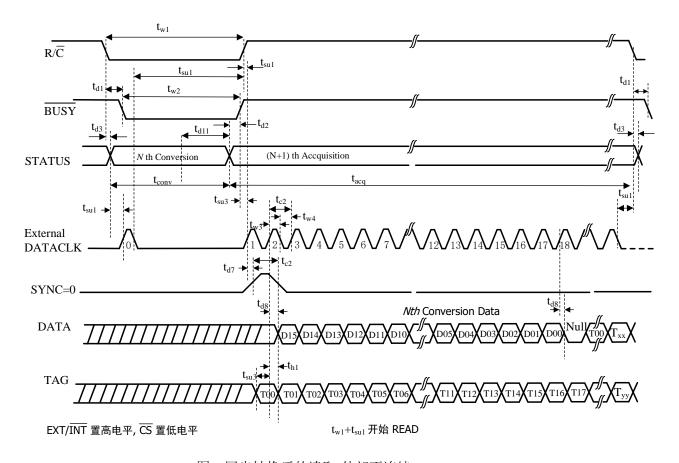


图 9 同步转换后的读取(外部不连续 DATACLK)

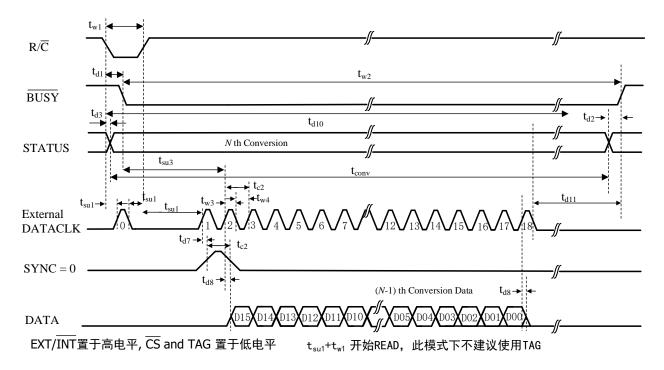


图 10 同步转换期间读取上一次转换数据(外部不连续 DATACLK)

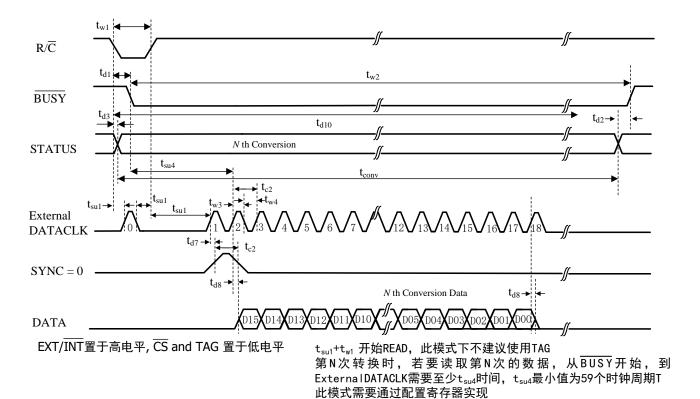


图 11 同步转换期间读取本次转换数据(外部不连续 DATACLK)

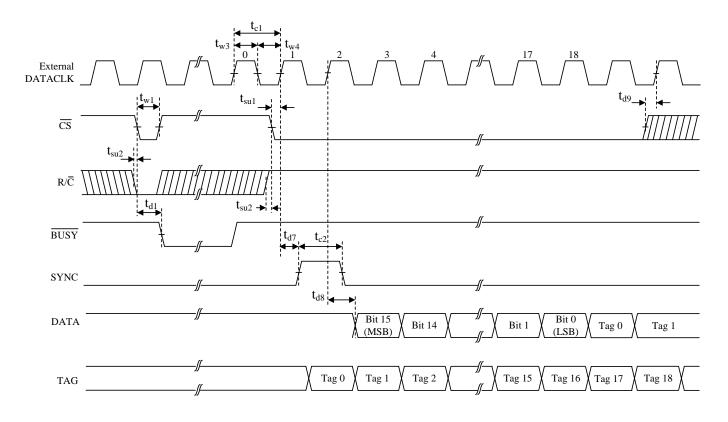


图 12 转换后连续外部时钟 DATACLK(EXT/INT置高电平)读取的转换和读取时序(不推荐)

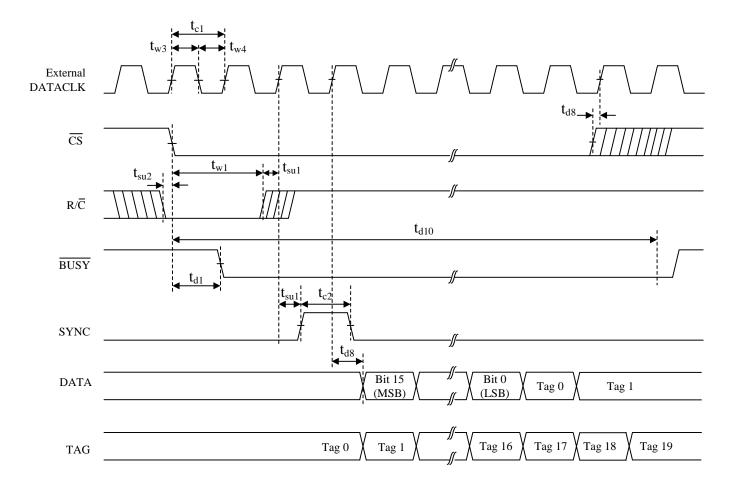


图 13 转换期间使用连续外部时钟 DATACLK(EXT/INT并置高电平)读取先前的转换结果的转换和读取时序(不推荐)

使用说明

基本操作

SC1462 中有两个转换控制信号: CS和 R/C,这两个信号在内部一起作用。启用转换功能时必须将CS置为低电平;必须让转换信号有效,将 R/C置为低电平。这两个信号先调低哪一个都是可行的,转换会从第二个信号的下降沿开始。转换开始时BUSY变为低电平,并在该转换的数据移位到内部存储寄存器后返回高电平。当BUSY变为高电平的时候,采样过程开始。

为了减少控制使用引脚的数量,可以将CS一直置于低电位,此时,R/C引脚专门控制转换和数据读取。在外部时钟模式下,只要 R/C为高电平且外部时钟有效,SC1462就会输出数据。在内部时钟模式下,无论CS和 R/C的状态如何,每个转换周期都会输出数据。SC1462提供一个 TAG输入,用于将多个转换器级联在一起。

读取数据

BUSY恢复为高电平时,转换结果可用。SC1462可以用直接二进制或二进制补码格式输出串行数据,由 SB/BTC引脚控制。MSB表示数据最高位,最先输出。上电后立即进行的第一次转换的结果是无效的。

EXT/INT引脚可以控制数据输出的时钟类型,内部时钟或外部时钟均可用;如果使用外部时钟,则可使用 TAG输入,以菊花链的形式将多个 SC1462 数据引脚链接在一起。

内部 DATACLK

在内部时钟模式下,前一次转换的数据会在当前的转换周期内输出。由于内部数据时钟与内部转换时钟同步,因此不会干扰转换过程。

当 EXT/INT为低电平时,DATACLK 引脚变为输出。在满足时序 t₈之后,会在每次转换开始时产生 16个时钟脉冲,在转换期间只能读取前一次的转换结果。当 DATACLK 处于非活动状态时,会返回到低电平。与该时钟同步的 16 位串行数据从数据引脚移出,每个位在上升沿和下降沿可用。DATA 引脚返回到传输开始时所检测到的 TAG 引脚的输入状态。

外部 DATACLK

外部时钟模式提供多种方法来检索转换结果。但是,由于外部时钟无法与内部转换时钟同步,因此必须小心,避免损坏数据。

当 EXT/INT设置为高电平时,R/C和CS信号控制读状态。当启用读取状态时,前一个转换结果被移出 DATA 引脚,该操作与连接到 DATACLK 引脚的外部时钟同步。每一位数据都可以在下降沿和上升沿使用。最大的外部时钟速度为 28.5MHz,允许数据在转换开始或采样开始时快速移出。

当使用外部时钟时,有几种可用的操作模式。建议外部时钟只在读数据时运行。这是不连续时钟模式。由于外部时钟没有与控制转换的内部时钟同步,外部时钟的微小变化可能会导致冲突,破坏转换过程,无法保证外部时钟持续运行。特别重要的是,外部时钟在转换周期的后半部分不会运行(约为 tan 指定的时间段,请参阅时序要求表)。

在不连续时钟模式下,数据可以在转换期间或采样期间读取,有无 SYNC 信号均可。转换期间读取的数据必须满足 tall 时序要求。在开始转换之前,必须完成采样期间的数据读取。

无论在采样期间读还是在转换期间读,只要外部时钟有至少一个上升沿,即使在非读状态,也会生成 SYNC 脉冲。在具有 SYNC 模式的不连续外部时钟模式中,在读取命令后的第一个时钟的上升沿后会产生一个 SYNC 脉冲,数据在 SYNC 脉冲后被移出。SYNC 脉冲可以在下一个下降沿和下一个上升沿上检测到。以此类推,每个位可以先在下降沿上读,然后在下一个上升沿上读。因此,在读命令后,需要 17 个时钟脉冲的下降沿来读取数据。对于上升沿的读数至少需要18 个时钟脉冲。

如果时钟在非读状态时完全不活动,则不会产生同步 SYNC 脉冲。在这种情况下,SC1462 会在第一个时钟的上升沿输出数据最高位 MSB。MSB 可以在第一个时钟下降沿或下一个时钟上升沿上读取。在这种没有 SYNC 的不连续外部时钟模式中,需要 16 个时钟读取下降沿上的数据,17 个时钟读取上升沿上的数据。

上述不连续外部时钟读取所需要的脉冲个数,与 SYNC 和读取时钟沿的关系,如表 5 所示。

 描述
 需要的数据传输脉冲个数

 带有 SYNC
 不带 SYNC

 在DATACLK的下降沿读取
 17
 16

 在DATACLK的上升沿读取
 18
 17

表 5 DATACLK 脉冲信息

TAG 特性

TAG特性允许从多个 SC1462 转换器读取单个串行线上的数据。转换器级联在一起,使用 DATA 引脚作为输出,使用 TAG 引脚作为输入,如图 14 所示。最后一个转换器的 DATA 引脚驱动处理器的串行数据输入。然后,数据通过每个转换器转移到串行数据线上,与外部提供的数据时钟同步。内部时钟不能用于此配置。

在采样期间,推荐使用不连续的外部数据时钟。由于在转换期间没有足够的时间从多个转换器读取数据而不违反 t_{dl1} 约束(请参阅外部 DATACLK 部分),因此必须在采样期间读取数据。采样周期必须足够长,以允许在开始新的转换之前读取所有数据字。

在图 14 中,NULL 位将数据字与每个转换器隔开。DATA 引脚在 READ 循环结束时的状态反映了 TAG 引脚在循环开始时的状态。这在所有 READ 模式中都是正确的,包括内部时钟模式。例如,当单个转换器在内部时钟模式下使用时,TAG 引脚的状态决定了所有 16 位移出后 DATA 引脚的状态;当多个转换器级联在一起时,这种状态形成分隔单词的 NULL 位。因此,第一个转换器的 TAG 引脚接地如图 14 所示,NULL 位在每个数据字之间变为零。

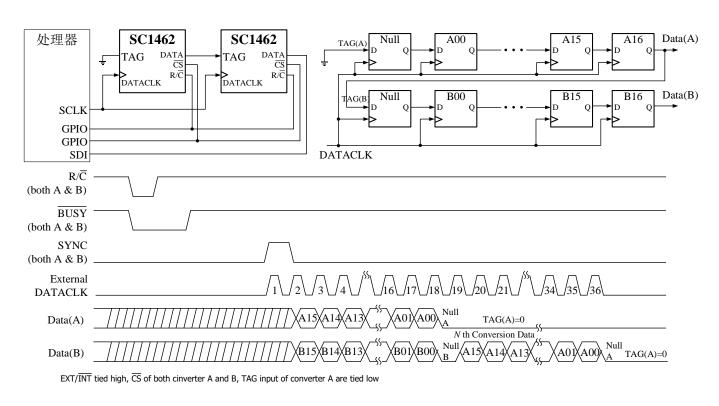


图 14 单次转换 TAG 特性的时序(使用外部 DATACLK)

模拟输入

SC1462 有 6 个模拟输入范围,如表 6 所示。偏移和增益规格采用 0.1%, 0.25W,外部电阻进行出厂校准,如图 16 和图 17 所示。如果可以接受较大的增益和偏移误差,或者使用软件校准,则可以省略掉外部电阻。如图 16 和图 17 所示的硬件微调电路可以将误差降至零。

模拟输入引脚 R1_{IN}、R2_{IN}、R3_{IN}具有±25V 过压保护功能。输入信号必须参考 AGND1。这最大限度地减少了模拟设计中典型的接地回路问题。模拟输入应该由低阻抗源驱动,典型驱动电路如图 15 所示。

SC1462 可以使用内部 2.5V 参考电压或外部参考电压工作。连接到引脚 REF 的外部参考电压绕过了内部参考电压。外部参考必须驱动将引脚 REF 与内部参考分开的 4kΩ 电阻。负载随内部和外部参考电压之间的差异而变化。外部参考电压范围为 2.3V~2.7V,内部参考电压约为 2.5V。无论是内部的还是外部参考电压,都会用一个内部缓冲器在引脚 CAP 进行缓冲。

SC1462 使用 2.2μ F 电容连接到引脚 CAP 和 REF 进行工厂测试。每个电容器应放置尽可能接近其引脚。引脚 REF 上的电容限制了内部参考噪声,若此电容较小,可能会降低信噪比 SNR 和信噪失真比 SINAD。引脚 CAP 上的电容稳定内部参考缓冲器的电压,并在转换过程中为 CDAC 提供充电的电荷,小于 1μ F 的电容可能会导致缓冲变得不稳定,无法为 CDAC 提供足够的电荷。该部件的测试规格为 2.2μ F。这些补偿电容器的等效串联电阻(ESR)也是至关重要的,总 ESR 必须小于 3Ω 。

内部参考电压和缓冲器不能驱动外部负载,否则会降低性能。内部参考电压上的任何负载都会导致 $4k\Omega$ 电阻上的电压下降,并影响增益。内部缓冲器能够驱动 $\pm 2mA$ 的负载,但任何负载都可能导致 CDAC 参考的扰动,降低性能。需要指出的是,SC1462 不需要第二个高速放大器作为缓冲来隔离 CAP 引脚与 $R3_{IN}$ 引脚中依赖于信号的电流。

外部参考电压范围为 2.3V~2.7V。参考电压决定了最小有效位(LSB)的大小。参考电压越大, LSB 越大, 信噪比越高。较小的参考电压会降低信噪比。

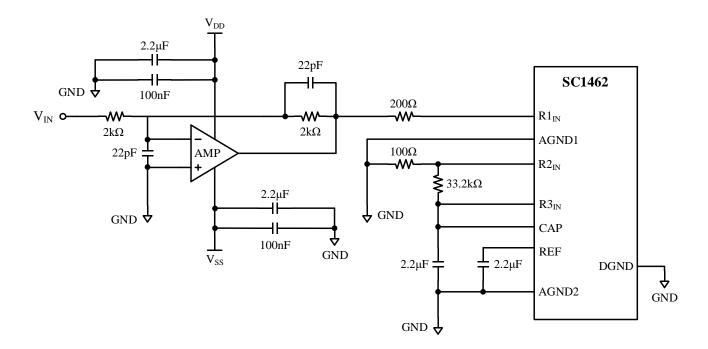


图 15.典型驱动电路((±10v, 无 trim)

表 6 输入范围连接(参见图 29 和图 30 的完整信息)

模拟输入范围	R1 _{IN} 连 200Ω 电阻到	R2 _{IN} 连 100Ω 电阻到	R3连接	阻抗
±10V	V _{IN}	AGND	CAP	11.5kΩ
±5V	AGND	V _{IN}	CAP	6.7kΩ
±3.33V	V _{IN}	V _{IN}	CAP	5.4kΩ
0~10V	AGND	$V_{\rm IN}$	AGND	6.7kΩ
0~5V	AGND	AGND	$V_{\rm IN}$	5.0kΩ
0~4V	V _{IN}	AGND	$V_{\rm IN}$	5.4kΩ

表 7 控制真值表

特定功能	CS	R/C	BUSY	EXT/INT	DATACLK	PWRD	SB/BTC	操作
使用内部时	1=>0	0	1	0	output	0	X	从转换 n-1 在 Data 上打卡
钟启动转换 和输出数据	0	1=>0	1	0	output	0	Х	的数据同步到 DATACLK 上输出的 16 个时钟脉冲
	1=>0	0	1	1	input	0	X	启动转换 n
	0	1=>0	1	1	input	0	X	启动转换 n
使用外部时 钟启动转换 和输出数据	1=>0	1	1	1	input	X	х	输出带或不带 SYNC 脉冲 的数据。详见读取数据小 节
作机口致功	1=>0	1	0	1	input	0	X	输出带或不带 SYNC 脉冲
	0	0=>1	0	1	input	0	х	的数据。详见读取数据小 节
无动作	0	0	0=>1	X	X	0	X	这是可接受的情况
	X	X	X	X	X	0	х	模拟电路供电,转换可以 进行
关断信号	X	X	Х	X	X	1	х	模拟电路被禁用,以前转 换的数据保存在输出寄存 器中
选择输出格	X	X	X	X	X	X	0	串行数据以二进制 2 的补 码格式输出
式	X	х	Х	X	X	X	1	串行数据以直接二进制格 式输出

表 8 输入码和理想输入电压

								数字	输出	
描述	模拟输入							削补码 BTC W)	二流 (SB/ HIC	BTC
								HEX	BINA RY	HEX
Full- scale range	±10V	±5V	±3.33V	0V~10V	0V~5V	0V~4V				
LSB	305μV	153μV	102μV	153μV	76μV	61µV				
Full-scale (FS-1LSB)	9.999695 V	4.999847 V	3.333231 V	9.999847 V	4.999924 V	3.999939 V	0111 1111 1111 1111	7FFF	1111 1111 1111 1111	FFFF
Midscal e	0V	0V	0V	5V	2.5V	2V	0000 0000 0000 0000	0000	1000 0000 0000 0000	8000
One LSB below midscal e	-305μV	153μV	±102μV	4.999847 V	2.499924 V	1.999939 V	1111 1111 1111 1111	FFFF	0111 1111 1111 1111	7FFF
-Full scale	-10V	-5V	3.333333 V	0V	0V	0V	1000 0000 0000 0000	8000	0000 0000 0000 0000	0000

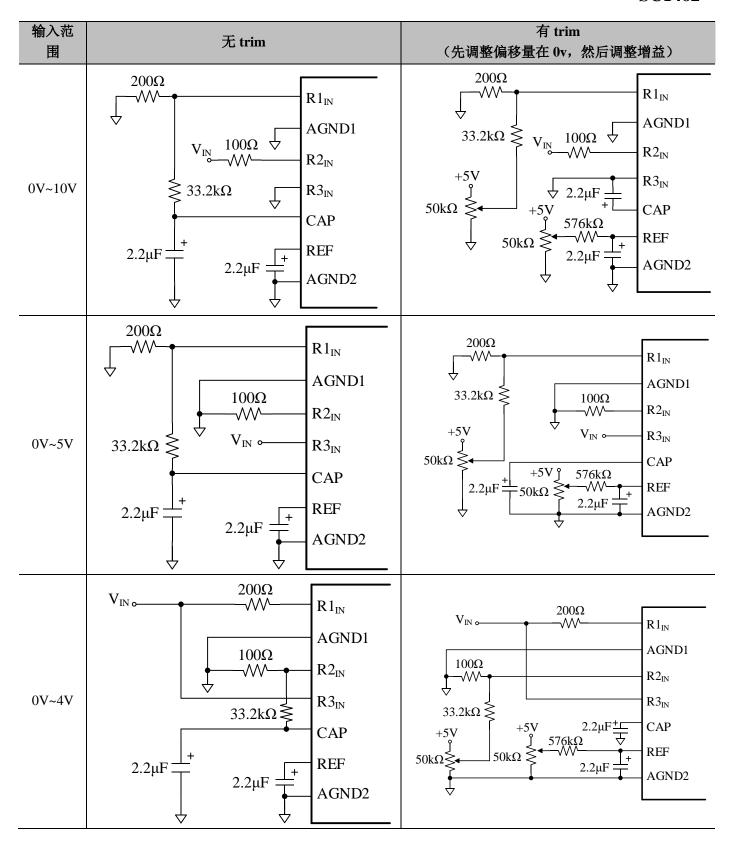


图 16 单极输入范围的偏移/增益电路

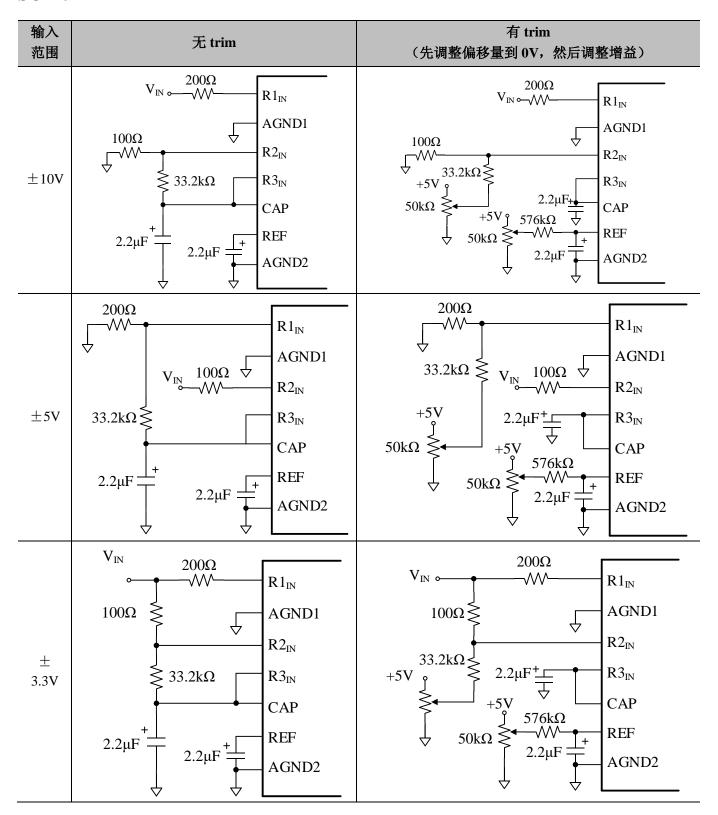
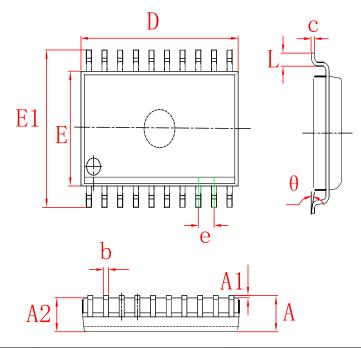



图 17 双极输入范围的偏置/增益电路

外形尺寸

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches
Syllibol	Min	Max	Min	Max
Α	2. 350	2. 650	0. 093	0. 104
A1	0. 100	0. 300	0. 004	0. 012
A2	2. 100	2. 500	0. 083	0. 098
b	0. 330	0. 510	0. 013	0. 020
С	0. 204	0. 330	0.008	0. 013
D	12. 520	13. 000	0. 493	0. 512
E	7. 400	7. 600	0. 291	0. 299
E1	10. 210	10. 610	0. 402	0. 418
е	1. 27	70 (BSC)	0. 05	50 (BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

图 18 20 脚 SOIC 封装尺寸图

订购信息

表 9 产品订购信息

型号	温度范围	物料编号	封装类型	包装形式
SC1462	-40~85°C	SC1462GAOUMX	SOIC-20	Tube

注: 也可支持 TSSOP-28 封装